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Abstract

In this work, novelty detection identifies salient im-
age features to guide autonomous robotic explo-
ration. There is little advance knowledge of the
features in the scene or the proportion that should
count as outliers. A new algorithm addresses this
ambiguity by modeling novel data in advance and
characterizing regular data at run time. Detection
thresholds adapt dynamically to reduce misclassi-
fication risk while accommodating homogeneous
and heterogeneous scenes. Experiments demon-
strate the technique on a representative set of nav-
igation images from the Mars Exploration Rover
“Opportunity.” An efficient image analysis proce-
dure filters each image using the integral transform.
Pixel-level features are aggregated into covariance
descriptors that represent larger regions. Finally, a
distance metric derived from generalized eigenval-
ues permits novelty detection with kernel density
estimation. Results suggest that exploiting training
examples of novel data can improve performance
in this domain.

1 Introduction
Novelty detection aims to identify subsets of data that are
inconsistent with the majority [Markou and Singh, 2003;
Hodge and Austin, 2004; Grimaldi et al., 2006]. Standard ap-
proaches include estimating data’s probability density [Quinn
and Williams, 2007; Markou and Singh, 2003], characteriz-
ing its geometry, or identifying its support [Scholkopf et al.,
2001; Chen et al., 2008]. Conventionally there are three dif-
ferent versions of novelty detection that each exploit different
kinds of prior information [Hodge and Austin, 2004]. Often
prior examples of “novel” and “regular” data are available,
and novelty detection reduces to a two-class classification
task [Hodge and Austin, 2004]. If only examples of regu-
lar observations are present then novelty detection becomes a
one-class classification problem. Here one identifies observa-
tions that differ significantly from the training set [Chen et al.,
2008]. Finally, novelty detection with no training examples is
tantamount to unsupervised classification or density estima-
tion. One identifies outlier observations that are far from the
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Figure 1: Density estimation for novelty detection in Mars
Exploration Rover Images. Each image patch is associated
with a feature vector x. Terrain varies significantly across
scenes and a different proportion of each image counts as
“novel.” The proposed solution adapts the novelty detection
threshold to minimize expected misclassification risk based
on a common, shared model fN (x) of novel objects. Images
courtesy NASA, Cornell, Caltech Jet Propulsion Laboratory.

majority [Chen et al., 2008], or likely to come from a differ-
ent distribution [Quinn and Williams, 2007].

This work examines a fourth kind of novelty detection that
models novel observations in advance and characterizes reg-
ular observations at run time. This is appropriate for applica-
tions that do not simply seek outliers for their own sake, but
instead use some other standard to define which data points
count as novel. In this case there is some presumed cost for
false positive detections, and the proportion of novel obser-
vations could vary across trials. An advance model of novel
observations can leverage domain knowledge, adjusting the
novelty detection decision appropriately for each new trial.

Our motivating application is autonomous exploration by
remote agents such as orbiting spacecraft, submersibles, or
planetary rovers. These robots must explore unknown en-
vironments autonomously while only rarely communicating
their discoveries to operators. Here novelty detection can
identify interesting image features for prioritized transmis-
sion [Castaño et al., 2003]. If only a handful of data prod-
ucts can be transmitted due to bandwidth constraints, nov-
elty detection can maximize the number of interesting terrain
features in the downlink. It can suggest scientifically inter-



esting image areas to inform region-of-interest based image
compression [Wagstaff et al., 2004]. Novelty detection can
also identify promising features for automatic deployable in-
struments [Castaño et al., 2007; Smith et al., 2007]. Often
sensors like spectrometers or high resolution cameras are ex-
pensive in time, bandwidth or energy; novelty detection can
suggest targets for these instruments and improve the overall
science return of autonomous operations.

In remote exploration one cannot always anticipate the pro-
portion of observations that should count as novel, i.e. that
will be of interest to the operators. Consider the two images
from a Mars Rover traverse [Maki et al., 2003] in Figure 1.
Here the goal is to target novel features that are unlike oth-
ers in the image. The first “boring scene” is a featureless
dunescape where even the most extreme outliers make poor
science targets. The second image exemplifies the opposite
extreme, where a significant portion of the image counts as
interesting. For instance, the rock outcrops and textured sedi-
ment could all justify followup observations. An appropriate
novelty detection rule must adapt across scenes in order to
detect the appropriate portion of outlier image features.

The proposed solution leverages prior models of novel ob-
servations to minimize expected misclassification loss. An
expert provides an advance library of example targets; this
suggests appropriate novelty detection decision rules for each
new environment the agent explores. This work demonstrates
the method with a simple novelty detection algorithm based
on density estimation. The agent sets detection thresholds
dynamically to reduce misclassification risk. These detection
decisions adapt to homogeneous and heterogeneous scenes.

Exploration agents’ limited computational resources pre-
clude the most intensive image analysis techniques. Planetary
exploration is particularly constrained since it relies on low
power, radiation certified flight processors whose progress
lags years or decades behind consumer devices [Cox, 2007].
We address these constraints with efficient image analysis us-
ing the integral image transform [Lienhart and Maydt, 2002].
A convolution with Haar-wavelet like filters [Lienhart and
Maydt, 2002] produces local image features. We aggregate
local features into covariance descriptors that represent larger
image patches, and detect novel image patches with a dis-
tance metric based on generalized eigenvalues [Tuzel et al.,
2006].

This paper evaluates novelty detection techniques on a rep-
resentative set of navigation images taken by the Mars Explo-
ration Rover “Opportunity” during its multiple-year traverse
of the Meridiani Plateau, Mars [Maki et al., 2003]. Here we
detect novel rock and sediment features in rover surface im-
ages. Tests investigate the performance of adaptive threshold-
ing, and the image descriptors in general, for both simulated
target selection and prioritized return tasks. They demon-
strate improved performance using prior domain knowledge
to guide novelty detection decisions.

2 Adaptive Thresholding Approach
The proposed method treats novelty detection as a binary
classification task, assigning a cost to each false positive
(a regular datapoint labeled as novel) and false negative (a

missed novel datapoint). This leads naturally to a Bayesian
approach in which the utility of a decision rule is based on
its expected classification loss. Given a new dataset one can
choose an appropriate novelty threshold to minimize the ex-
pected loss of the detection decision.

Consider the data X = {X1, X2, . . . Xn}, Xi ∈ X drawn
from a two-component mixture model. The first component
corresponds to the majority or regular data; it appears with
probability PR and has PDF fR(x). A novel component ap-
pears with probability PN = 1−PR and has PDF fN (x). The
PDF of the joint dataset f(x) decomposes:

f(x) = PRfR(x) + PNfN (x) (1)

A binary decision rule Dθ(x) : X 7→ [0, 1] classifies unla-
beled features. It evaluates to 1 if the feature is novel and
0 otherwise. For example, the tests that follow use a de-
cision rule based on the PDF; novel data points are those
with low probability density. Alternatives include distance-
or geometry-based measures of novelty. One can parame-
terize the decision rule by some θ capturing choices like the
detection threshold or the basis used to represent data points.
The classification loss Lθ is a linear combination of false pos-
itives and false negatives weighted by coefficients Lα and Lβ

respectively. The expected loss is:

E[Lθ] = LαPR

∫
Dθ(x)fR(x)dx +

LβPN

∫
(1−Dθ(x))fN (x)dx (2)

The best choice for θ is that which minimizes this expression.
Dropping constant terms produces an objective function Vθ:

Vθ = LαPR

∫
Dθ(x)fR(x)dx−

LβPN

∫
Dθ(x)fN (x)dx (3)

Domain knowledge can estimate terms of this equation that
are shared across trials. For example, in the one class clas-
sification version of novelty detection one presumes that the
distribution of regular data is constant and models fR(x) en-
tirely in advance. This is not appropriate for the current appli-
cation since scene structure and illumination conditions could
vary significantly across images. Instead, one can more safely
assume that novel data points are drawn from some broad
shared distribution. For reducing risk it is sufficient to esti-
mate f(x), which is evident from runtime observations, and
fN (x), which is common across all environments in the ap-
plication domain.

Substitution from equation 1 removes references to fR(x);
and nonparametric plug-in estimates [Wasserman, 2006] re-
place the remaining PDFs. The density f̂(x) consists of point
masses at the set of new observations, and f̂N (x) of point
masses given by the training set of novel data.

Vθ = Lα

∫
Dθ(x)f̂(x)dx

−(Lα + Lβ)PN

∫
Dθ(x)f̂N (x)dx (4)



This expresses the objective in terms of Sθ, the fraction of
observations detected as novel in the new test data. Similarly
SNθ is the fraction of novel training points that would suc-
cessfully be detected as novel in context of the new test data.

Vθ ∝ Lα Sθ − (Lα + Lβ)PNSNθ (5)
This motivates the adaptive thresholding procedure (Algo-
rithm 1). It requires a training library N of novel examples,
the learned or assumed proportion PN of novel data in the test
environment, and penalties Lα and Lβ for false positive and
false negative detections. Then one chooses an optimal detec-
tion threshold θ? to minimize equation 5. Small changes to
θ that do not alter any classifications do not affect this objec-
tive, so it is never necessary to evaluate a number of thresh-
olds greater than the total size of the training and test sets.

Input: Training set of novel data N , test set X
Prior probability PN of novel data,
False positive loss Lα

False negative loss Lβ

Output: Detected “novel” subset of X

foreach possible threshold θ do
Sθ = 0, SNθ = 0;
foreach x in X do

if Dθ(x) = 1 then
Sθ = Sθ + 1

|X| ;
foreach x in N do

if Dθ(x) = 1 then
SNθ = SNθ + 1

|N | ;
θ? = argminθ [LαSθ − (Lα + Lβ)PNSNθ];
return x for which D?

θ(x) = 1
Algorithm 1: Novelty detection with adaptive thresholds.

Figure 2 shows a simple example based on a mixture of
two Gaussians. Regular data is drawn from a narrow dis-
tribution N (µ, σ2), µ ∼ N (0, 1), σ ∼ gamma(1, 1). The
novel data comes from a broad Gaussian N (µN , σ2

N ) with
µN ∼ N (0, 1) and σN ∼ gamma(9, 0.5). Here the decision
rule fits a single Gaussian distribution to f(x) by maximum
likelihood, and classifies as novel those points that fall under
a density threshold.

This simulation weights false positives and false negatives
equally, so Lα = 1.0. The threshold θ is set presuming
PN = 0.05, when in fact it varies over the range shown. Loss
as a function of PN is shown for two novelty detection strate-
gies. The first decision rule uses a single static threshold of
θ = 0.05, while the second uses the adaptive threshold of
Algorithm 1. Figure 2 shows the average results of over 100
trials. The adaptive threshold outperforms conventional nov-
elty detection, incurring a lower mean loss per trial over a
wide range of probabilities including the case where the prior
is correct (PN = 0.05).

Figure 3 illustrates a similar test where PN is held con-
stant but the loss function varies. Adaptive thresholding im-
proves performance, especially in regimes where false pos-
itive penalties are weighted very differently from false neg-
atives. The algorithm can compensate by returning more or
fewer detections as appropriate.

Figure 2: Novelty detection with adaptive thresholding. Per-
formance profiles describe static and adaptive decision rules
that presume PN = 0.05, when the actual probability varies.
Empirical loss is given by equation 5 with Lα = Lβ = 1.
The mean of 100 trials is shown.

Figure 3: Novelty detection with adaptive thresholding. Per-
formance is shown for static and adaptive decision rules when
PN = 0.05, and loss functions have varying ratios for Lα and
Lβ . Lines show empirical loss (mean over 100 trials).

3 Image Analysis
Figure 4 shows the basic architecture for analyzing Mars Ex-
ploration Rover images. The procedure divides the 1024 ×
1024-pixel image into a grid of 50 × 50 pixel subwindows.
Here our automatic instrument targeting requires classifying
each subwindow as “ordinary” or “novel” with respect to
the other subwindows in the image. The original Navigation
Camera image (Top Left) contains many irrelevant image el-
ements such as the horizon, farfield features, and the rover
deck. Range masking uses stereo data to discard these fea-
tures; it excludes all subwindows whose pixels lie outside the
range from 2.5m to 10m. Limiting analysis to these ranges
also prevents distance-induced changes in focus and texture.

The next step computes a set of “Haar wavelet-like” fil-
ters that correspond roughly to oriented edge, bar, boxcar and
center-surround filters [Lienhart and Maydt, 2002]. These re-
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Figure 4: Image analysis and novelty detection architecture.
The original image (Top Left) is convolved with a filter bank
to produce pixel-level features. Range data (Top Right) ex-
cludes irrelevant parts of the image such as the extreme far
field and the rover deck. Pixel-level features combine into
a single covariance descriptor for each subwindow (Bottom
Left). Adaptive thresholding identifies novel subwindows.

veal pixel properties like albedo, the local first and second im-
age derivatives, edges and corners. The integral image trans-
form permits fast calculation of these values using a handful
of integer operations. It also furnishes an efficient contrast
normalization detailed by Lienhart et al [2002]. The result
for each pixel is a numerical feature vector with one dimen-
sion for each filter channel. These experiments use five Haar-
wavelet-like filters: a “center-surround” blob detector, and
vertical and horizontal gradient and edge filters. All Haar-
wavelet-like filters have a width of 5 pixels. This feature set
was determined manually through trial and error. Automatic
feature selection could also be used to explore a more com-
plete filter bank parameterization.

Detecting outlier subwindows requires a numerical repre-
sentation for the content of these larger image regions. Image
texture has been found in other contexts to be a good correlate
of geomorphology in rover images [Thompson et al., 2008].
Here we characterize subwindows with covariance descrip-
tors, discussed at length in Tuzel et al [2006]. The covariance
descriptor represents a rectangular region by the covariance

matrix of its pixel-level features. It is a compact yet discrim-
inative representation of texture with some invariance to the
spatial arrangement of features in the subwindow. It is espe-
cially advantageous for remote operations due to its compu-
tational efficiency. The integral image transform can quickly
compute the required summations to produce covariance ma-
trix entries from pixel features.

We use generalized eigenvalues to compare multiple
descriptors [Förstner and Moonen, 1999]. For covari-
ance matrices C1 and C2, the generalized eigenvalues
{λi(C1, C2)}i=1...m are the solutions to the expression
λiC1vi−C2vi = 0, for associated eigenvectors vi. Following
Tuzel et al, a suitable distance metric is:

ρ(C1, C2) =

√√√√ m∑
i=1

ln2 λi(C1, C2) (6)

This distance metric makes the covariance descriptors rele-
vant for a wide range of novelty detection strategies including
distance-based approaches or support-based strategies using
Mercer kernels.

Pairwise distances permit density estimation with a
squared exponential kernel [Wasserman, 2006]. For a set of n
subwindows, the probability density for a particular subwin-
dow x is the following:

f̂(x) =
1
n

n∑
j=1

1√
2πw

exp
{
−ρ(Cx, Cj)2

2w2

}
(7)

The parameter w is a bandwidth that regularizes the density
estimate. It can be set through methods such as the Normal
reference rule or Bayesian approaches. These experiments
favor leave-one-out cross validation [Wasserman, 2006].

The resulting novelty detection function estimates f̂(x) for
the subwindows of each new image and classifies those with
values below some threshold as novel. We identify the best
threshold by computing the density estimate f̂(x) for each
training example in the context of the new image. This leads
to risk values (equation 5) for thresholds that exclude varying
numbers of subwindows. The best threshold balances con-
servatism (reducing the loss due to false positive detections)
and recall (detecting as many of the training subwindows as
possible). Thus, adaptive thresholding produces few or no de-
tections in instances where the image is quite homogeneous
relative to the training data, the prior probability of a novel
point is low, or false positives detections have a high cost.

4 Case Study: MER Navigation Images
Here a case study tests the proposed approach using images
from the Navcam instrument [Maki et al., 2003] onboard the
Mars Exploration Rover (MER) “Opportunity.” This rover
has traveled several kilometers across the Meridiani plateau
in a mission lasting over five years. It has crossed terrain
consisting of dunes punctuated by occasional rock outcrops
and other novel sediment features. The case study consid-
ers 11 representative images from diverse locations along the
traverse, excluding images with overlapping content, extreme
lighting or very poor contrast. Filtering for range yields a set
of over 400 subwindows.
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Figure 5: Typical novelty detection results demonstrating the
adaptive density threshold. A: Nondescript dunes; no novel
subwindows are detected. B: Several small rocks are present.
The algorithm identifies these, along with the crest of a dune,
as novel. 14 subwindows fall under the density threshold. C:
A large portion of this area is covered by soil and outcrop
features similar to the novel examples from the training set.
The resulting threshold detects over 100 subwindows.

In practice mission scientists themselves may disagree on
objectives [Castaño et al., 2005], so one cannot claim with
certainty that a detected feature is not interesting. However,
we can get some idea of performance with specific objects
that are unquestionably novel and easy to identify. Many
scenes in the data set contain a small portion of outcrop or sur-
face rocks; for the purposes of these trials, novel subwindows
are those containing obvious rocks or rock outcrops greater
than 20 pixels in length. These subwindows comprise a train-
ing set of novel data and give a lower bounds on the number
of true positives.

Figure 5 shows typical results with the adaptive density
threshold. The second row illustrates the density f̂(x) com-
puted for each subwindow using kernel density estimation.
Brighter values correspond to higher novelty, or equivalently,
low probability density. The final row shows subwindows se-
lected by adaptive thresholding. The scene in column A is
relatively homogeneous and the adaptive threshold does not
detect any image subwindow as novel. In column B several
small rocks are present. The algorithm identifies these as
novel, along with the crest of a dune. 14 subwindows fall
under the density threshold. Finally, a large portion of the
column C image is covered by soil and outcrop features. The
resulting threshold detects over 100 subwindows.

Figure 6 quantifies performance for the entire dataset. It
compares detection results to a static thresholding scheme
that applies the same threshold across all images. This test

Figure 6: Test results on MER imagery for both static and
adaptive thresholds using the center-surround feature. A third
line shows novelty detection using the entire feature set with
a fixed threshold. Finally, the solid dark line illustrates the
theoretical performance of a selective sampling and return
strategy that does not consider image content. Vertical and
horizontal axes correspond to the number of detected novel
subwindows that appear in the set of rock outcrops.

uses a truncated feature set comprised solely of the center-
surround filter (a basic edge detector) from the Haar-like filter
bank. This is important because the training set is relatively
sparse, and the complete feature set provides very discrimina-
tive covariance features leaving little overlap between train-
ing and test distributions. Then the estimate of f̂N is poor, and
trivially low thresholds can exclude all novel subwindows in
the training set. Limiting analysis to the single most informa-
tive filter remedies this problem.

Figure 6 suggests that, with respect to detecting rock fea-
tures, both novelty detection methods offer significant advan-
tages over naı̈ve instrument targeting that ignores image con-
tent. Adaptive thresholding successfully returns many more
outcrop subwindows than the static method for a wide range
of loss functions. It offers nearly double the detection preci-
sion of the static method when few detections are returned.
The third (red) line of Figure 6 shows the results of the nov-
elty detection method using the entire feature set and a fixed
detection threshold. This offers little benefit over the center-
surround filter, but there may be some improvement in the ex-
treme high recall regimes. Future work with a larger dataset
may investigate this phenomenon for adaptive thresholding.

5 Conclusions
This work demonstrates a nonparametric strategy for optimiz-
ing novelty detection decision rules based on a prior model of
novel data. A case study applies the technique to adaptive
thresholding for image-based novelty detection in the context
of remote science. The integral image furnishes efficient fea-
ture descriptors for rectangular image regions. Then, density
estimation based on a generalized eigenvalue metric identi-
fies novel regions. Simulations and field data suggest adap-



tive thresholding can improve novelty detection performance
for a range of environments and loss functions.

There is considerable scope for future research. This pre-
liminary work does not consider any novelty detection strate-
gies beyond density estimation. Additionally, it may be useful
to evaluate alternative parameterizations besides the decision
threshold. One can adapt the feature vector itself, searching
with each new dataset for the representation that best discrim-
inates between regular and novel observations. Kernelized
novelty detection methods might tackle this problem by pa-
rameterizing the kernel function directly.

The previous section alluded to practical difficulties of es-
timating fN (x). In particular, a highly discriminative feature
set can reduce overlap between the training and test domains,
making it trivially easy for a very low threshold to exclude
the entire training set of novel subwindows. This follows nat-
urally from the assumption that f̂N accurately represents the
novel data, which is increasingly difficult to enforce for finite
training sets as the feature space becomes more discrimina-
tive. As a consequence performance is sensitive to noninfor-
mative dimensions of the feature vector. Fortunately optimal
density estimation from thin data is tantamount to a regular-
ization problem with classic remedies such as Bayesian priors
and cross validation.
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